Hollow quasi-Fatou components of quasiregular maps
نویسندگان
چکیده
منابع مشابه
Classification of Invariant Fatou Components for Dissipative Hénon Maps
Fatou components for rational functions in the Riemann sphere are very well understood and play an important role in our understanding of one-dimensional dynamics. In higher dimensions the situation is less well understood. In this work we give a classification of invariant Fatou components for moderately dissipative Hénon maps. Most of our methods apply in a much more general setting. In parti...
متن کاملBoundaries of Escaping Fatou Components
Let f be a transcendental entire function and U be a Fatou component of f . We show that if U is an escaping wandering domain of f , then most boundary points of U (in the sense of harmonic measure) are also escaping. In the other direction we show that if enough boundary points of U are escaping, then U is an escaping Fatou component. Some applications of these results are given; for example, ...
متن کاملFATOU MAPS IN Pn DYNAMICS
We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that globa...
متن کاملClassification and Structure of Periodic Fatou Components
For a given rational map f : Ĉ→ Ĉ, the Julia set consists of those points in Ĉ around which the dynamics of the map is chaotic (a notion that can be defined rigorously), while the Fatou set is defined as the complement. The Fatou set, where the dynamics is well-behaved, is an open set, and one can classify its periodic connected components into five well-understood categories. This classificati...
متن کاملUniformly Quasiregular Maps with Toroidal Julia Sets
The iterates of a uniformly quasiregular map acting on a Riemannian manifold are quasiregular with a uniform bound on the dilatation. There is a Fatou-Julia type theory associated with the dynamical system obtained by iterating these mappings. We construct the first examples of uniformly quasiregular mappings that have a 2-torus as the Julia set. The spaces supporting this type of mappings incl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society
سال: 2016
ISSN: 0305-0041,1469-8064
DOI: 10.1017/s0305004116000840