Hollow quasi-Fatou components of quasiregular maps

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Classification of Invariant Fatou Components for Dissipative Hénon Maps

Fatou components for rational functions in the Riemann sphere are very well understood and play an important role in our understanding of one-dimensional dynamics. In higher dimensions the situation is less well understood. In this work we give a classification of invariant Fatou components for moderately dissipative Hénon maps. Most of our methods apply in a much more general setting. In parti...

متن کامل

Boundaries of Escaping Fatou Components

Let f be a transcendental entire function and U be a Fatou component of f . We show that if U is an escaping wandering domain of f , then most boundary points of U (in the sense of harmonic measure) are also escaping. In the other direction we show that if enough boundary points of U are escaping, then U is an escaping Fatou component. Some applications of these results are given; for example, ...

متن کامل

FATOU MAPS IN Pn DYNAMICS

We study the dynamics of a holomorphic self-map f of complex projective space of degree d > 1 by utilizing the notion of a Fatou map, introduced originally by Ueda (1997) and independently by the author (2000). A Fatou map is intuitively like an analytic subvariety on which the dynamics of f are a normal family (such as a local stable manifold of a hyperbolic periodic point). We show that globa...

متن کامل

Classification and Structure of Periodic Fatou Components

For a given rational map f : Ĉ→ Ĉ, the Julia set consists of those points in Ĉ around which the dynamics of the map is chaotic (a notion that can be defined rigorously), while the Fatou set is defined as the complement. The Fatou set, where the dynamics is well-behaved, is an open set, and one can classify its periodic connected components into five well-understood categories. This classificati...

متن کامل

Uniformly Quasiregular Maps with Toroidal Julia Sets

The iterates of a uniformly quasiregular map acting on a Riemannian manifold are quasiregular with a uniform bound on the dilatation. There is a Fatou-Julia type theory associated with the dynamical system obtained by iterating these mappings. We construct the first examples of uniformly quasiregular mappings that have a 2-torus as the Julia set. The spaces supporting this type of mappings incl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Proceedings of the Cambridge Philosophical Society

سال: 2016

ISSN: 0305-0041,1469-8064

DOI: 10.1017/s0305004116000840